

A way to make Europe

Modelling the Mediterranean circulation: skills and flaws of present day models

Javier Soto-Navarro Gabriel Jordá

Mediterranean Institute for Advanced Studies (IMEDEA)

The CLIFISH project

Objectives:

- Study the effects of climate change, and in particular of the projected changes on physical processes, in the dynamics of nektobenthic populations and fisheries communities
- Identify the strengths and weaknesses of the Mediterranean ocean models in order to get more robust projections for the 21st century
- Gather the largest possible data set of Mediterranean current observations.
- Compare the observations with state of the art climatic hindcast simulations performed by different regional ocean circulation models in the Mediterranean basin.

Observations: moorings

- 155 moorings distributed throughout the basin at depths ranging from 3 to 2000 m.
- Velocity measures based on ADCP and/or current meters. Processed and quality controlled.
- Very variable time coverage: from a few months to several years.

Greek moorings

Spatial distribution of the observations

Temporal coverage

Observations: HF radar

- Three HFR systems: Strait of Gibraltar, Ebro Delta and Ibiza Channel
- Surface hourly data from 2013 to 2017
- Allows the evaluation of model surface current in more extent domains

HFR data availability

Observations: satellite altimetry data

- Absolute Dynamic Topography along satellite tracks (1993 2016) from AVISO dataset
- Derived geostrophic velocities from AVISO gridded product
- SSH extracted from the models along tracks, demeaned, detrended and seasonal cycle substratcted
- Eddy Kinetic Energy (EKE) computed from the along track geostrophic velocities of the models

Satellite tracks

Models and simulations

Simulation/model	Horizontal resolution	Temporal resolution	Vertical resolution	Boundary forcing	Atmospheric Forcing
COPR (NEMO)	1/16 x 1/16 degrees 6 – 7 km	Daily 3D U and V from 01/01/1987 - 31/12/2014	72 uneven vertical levels 3 m max resolution 1.5 m shallowest level	Daily T, S and velocity fields from global model + assimilation of T/S vertical profiles and satellite SLA	ERA-Interim
NM12 (NEMO)	1/12 x 1/12 degrees 8 – 9 km	Daily 3D U and V from 01/01/1987 - 31/12/2010	50 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation to Levitus climatology in a buffer zone + SSH dumping	ARPERA-V2
MDY (NEMO)	1/12 x 1/12 degrees	Daily 3D U and V from 01/10/1992 - 30/06/2013	72 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation and SSH dumping ORAS4 reanalysis + Assimilation of SSH (AVISO, T and S (CORA4)	ALDERA
ENS1250 (NEMO)	1/12 x 1/12 degrees 8 – 9 km	Daily 3D U and V from 01/01/2003 - 31/12/2013	50 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation to Levitus climatology in a buffer zone + SSH dumping	ARPERA-V2
ENS1275 (NEMO)	1/12 x 1/12 degrees 8 – 9 km	Daily 3D U and V from 01/01/2003 - 31/12/2013	75 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation to Levitus climatology in a buffer zone + SSH dumping	ARPERA-V2
ENS3650 (NEMO)	1/36 x 1/36 degrees 2 – 3 km	Daily 3D U and V from 01/01/2003 - 31/12/2013	50 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation to Levitus climatology in a buffer zone + SSH dumping	ARPERA-V2
ENS3675 (NEMO)	1/36 x 1/36 degrees 2 – 3 km	Daily 3D U and V from 01/01/2003 - 31/12/2013	75 uneven vertical levels 1 m max resolution 0.5 m shallower level	T/S relaxation to Levitus climatology in a buffer zone + SSH dumping	ARPERA-V2
ROMWMED32 (ROMS)	1/32 x 1/32 degrees 3 – 4 km WMED	Daily 3D U and V from 01/01/2003 - 31/12/2012	32 terrain – following sigma levels	NEMOMED 12	NCEP – CSFR
SYM (SYMPHoNIE)	1/32 x 1/32 degrees 3 – 4 km WMED	Daily 3D U and V from 25/05/2011 – 03/04/2017	32 terrain – following sigma levels		

COPR Correlation

Cabo de Palos station Z = 3 m

- For most of the moorings correlation < 0.4 (many < 0.2).
- Better results in the Western Mediterranean, specially along the Iberian slope.
- Correlation decreases with depth.

SKYRO station Z = 3 m

- Results for the rest of the models in the same line
- Satellite observations don't improve the results

45°N

42°N

39°N

36°N

33⁰N

30°N

00

8°E

16⁰E

24⁰E

NM12 Correlation

MDY/Observations Correlations ppal component 300 < Z <= 600 m Component 600 m <= Z

36°N

33°N

30°N

32°E

8°E

16⁰E

24[°]E

32°E

00

- EKE generally underestimated by the models, ٠ only in a few mooring the ratio is close to one.
- Better results in the western basin.

NM12 EKE ratio

MDY EKE ratio

8°E

16⁰E

24°E

00

8°E

16[°]E

24°E

32°E

30°N

00

8°E

16⁰E

24°E

32°E

32°E

30°N

00

8°E

 $16^{\circ}E$

24°E

32°E

00

8°E

16°E

24°E

- Median correlation between 0.07 (SYM) and 0.26 (MDY).
- Median EKE ratio between 0.13 (NM12) and 0.85 (ROMS).
 - In general very poor results for all the simulations.

Models validation: progressive vectors

Northern current

Models validation: HF radar

Surface circulation

ROMS average Surface Circulation

SYM average Surface Circulation

AVS average Surface Circulation

The general circulation of the basin is similar in all the simulations.

.

•

•

- Large differences in the small scale.
- The increase of the resolution leads to an increase in the intensity of the currents
- Satellite products highly underestimates the current velocity.

Surface Eddy Kinetic Energy

NM12 Eddy Kinetic Energy from ssh 0.09

MDY Eddy Kinetic Energy from ssh 0.04

ROMS Eddy Kinetic Energy from ssh

SYM Eddy Kinetic Energy from ssh

ENS1275 Eddy Kinetic Energy from ssh

ENS3650 Eddy Kinetic Energy from ssh

ENS3675 Eddy Kinetic Energy from ssh

The variability of the current is stronger in the simulations with higher resolution.

•

The mesoescale activity is misrepresented, specially on the simulations with lower resolution.

Catalan Coast section

۲

44°N 42°N 40°N 38°N 36°N 34°N 6°W 4°W 2°W 0° 2°E 4°E

- Very different representation of the current among simulations.
- Disagreement in position extension, intensity and depth.
- Barotropic component not captured by some models.

Zonal Overturning Function

$$ZOF(x,z) = -\int_{h_{bot}}^{z} \int_{y_{s}}^{y_{N}} u(x, y, z) dy dz$$

- All simulation shows the basin-wide general vertical anti-cyclonic gyre between 100-150 m and 300-600 m.
- Recirculation in the Eastern basin different among simulations : cyclonic for ENS and MDY, ani-cyclonic (and very strong) for COPR and null for NM12.

.

Recirculation in the Western basin only COPR, MDY and ROMS.

Conclusions

- A comprehensive compilation of in-situ observations of currents have been generated and quality controlled and is available for analysis.
- At present, a large number of regional climate simulations are available for the Mediterranean with different numerical codes, spatial resolutions and with/without data assimilation.
- However, large discrepancies are found in the characterization of Mediterranean circulation compared to observations and also among models. This is true both for the daily variability and also for the statistics
- Some large scale features are well captured by the models but not all of them. Also, regional and local features are in general not captured by the models.
- The mesoscale activity, important for the nutrients and larvae transport, is underestimated in all the products.
- These errors are expected to be persist in the projections for the XXI century. This means that the qualitative aspects of the climate change effect in the circulation will be present but the quantitative values will not be accurate.

Ongoing work

- Gathering of model projections from different institutions.
- Analysis of the projected temperature and salinity fields
- Critical assessment of projections of currents in the light of these results.